
WHITE PAPER

DevSecOps
Maturity Model
A blueprint for assessing and advancing your
organization’s DevSecOps practices.

datadog.com

http://datadog.com
http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

2

Table of
contents

2
The DevSecOps Maturity Model					 6

3
Implications for your DevSecOps Journey			 11

4
The Business Value of DevSecOps				 14

5
Getting Started								 16

1
Three key DevSecOps questions for leaders 			 4
to answer						

Executive Summary							 3

Authors									 16

About Datadog								 17

Appendix: Detailed Maturity Model				 18

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

3

Organizations must advance their DevSecOps practices to deliver high
quality, secure digital services to market quickly and efficiently. In order to
do that, leaders must ask themselves three key questions:

	– What is our current level of DevSecOps maturity?

	– Where is our desired level of DevSecOps maturity?

	– How do we get there?

This white paper introduces a DevSecOps maturity model that technical
leaders can use to answer these three questions, and enable their
organizations to stay competitive in the digital economy.

We close with a discussion of the metrics leaders can use to demonstrate
the business value of their DevSecOps initiative.

Executive
Summary

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

4

DevSecOps is a necessary requirement for organizations to deliver at
the speed and quality necessary to compete and innovate in the digital
economy. However, while leaders acknowledge that DevSecOps is a
strategic imperative, organizations struggle to get started on the journey
and advance their practices. In order to move forward, technical leaders
must ask themselves three key questions:

1.	 Where is my organization now?

2.	 Where do I want my organization to be?

3.	 How do we get there?

The first question requires an honest assessment of the organization’s
current DevSecOps competencies. The second question asks leaders to
define what “good” looks like for their business given their competitive
landscape. Finally, leaders need to identify initiatives that will bridge the
gap between where they are now and where they want to be.

To answer the three key questions, technical leaders need a
maturity model

According to software development expert Martin Fowler:

“A maturity model is a tool that helps people assess the current
effectiveness of a person or group and supports figuring out
what capabilities they need to acquire next in order to improve
their performance.”1

A maturity model presents a prescriptive point of view on a particular
domain and the most efficient and effective method to advance within that
domain, as shown below:

1
Three key
DevSecOps
questions for
leaders to answer

1
https://martinfowler.com/bliki/MaturityModel.html

EXPERT

BEGINNER
We’re here

INTERMEDIATE

We want to get here
ADVANCED

We need to get here first

http://datadoghq.com
http://datadog.com
https://martinfowler.com/bliki/MaturityModel.html
https://martinfowler.com/bliki/MaturityModel.html

DevSecOps Maturity Model

datadog.com

5

Methodology

Our technical enablement teams work hand in hand with customers to
help drive their DevSecOps transformations. In addition, we have more
than 10 years of experience helping over 14,000 companies drive DevOps
(and now DevSecOps) practices. As a result, we’ve observed companies
at all levels of DevSecOps maturity and seen their paths of progression.
We’ve built a DevSecOps maturity model that distills these customer
experiences into efficient paths that any organization can replicate.

DevOps vs. DevSecOps

The DevOps movement emerged more than 10 years ago to improve the
speed and quality of writing and running software by encouraging greater
collaboration and shared responsibility between Dev and Ops teams.
Organizations are still progressing in their DevOps journeys with varying
degrees of speed and success.

The increasing velocity of DevOps teams has opened the door for two
complications: (1) security issues are overlooked because DevOps teams
are mainly concerned with functional and performance characteristics
of software, not security, and (2) security is a bottleneck (or ignored)
because security teams still exist in a separate silo with separate tools,
culture, and processes from their DevOps counterparts (who are also
moving with increasing speed).

Importantly, these complications, which slow down the DevOps
lifecycle, are also occurring at a time when security itself is of increasing
importance. Organizations are under continuous attack from a wide variety
of threat actors. As more business is conducted through digital channels
and as organizations’ attack surface increases, technical and business
risks correspondingly grow.

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

6

DEVSECOPS LAYERS IN SECURITY CONTROLS, TOOLS, AND PRACTICES
THROUGHOUT THE DEVOPS LIFECYCLE.

SECURITY

AS CODE

SAST

DAST

SECURE

CODIN
G

THREAT

MODEL

SECURITY

SCAN

SECURITY

PATCH

RISKASSESSMENT
SECURE

TRANSFER

SECURITY

ANALYSIS

DIG
IT

AL

SIG
N

PEN

TEST
SECURIT

Y

MONIT
OR

SECURIT
Y

AUDIT

PLAN

BUILD
OBSERVE OPERATE

TEST

DEVELOP

DEV OPS

SEC

RELEASE DEPLOY

All these developments suggest that Security must be more deeply
integrated into the DevOps lifecycle. DevSecOps is therefore the logical
next stage of evolution in the DevOps movement. By integrating security
teams and practices into DevOps workflows, firms can further accelerate
their speed of delivery, increase the quality of their software, and boost
the reliability of their services in production. Breaking silos between
security teams and DevOps teams is essential for realizing the full
potential of the DevOps movement. DevSecOps is not a departure from
DevOps, but is simply the next evolution of DevOps.

The DevSecOps Maturity Model identifies four stages of maturity across
six major competency areas. Below, we give an overview of each stage and
competency area before presenting the full maturity model.

The Stages

We identify four key stages of DevSecOps maturity. These stages are based
on patterns witnessed in thousands of diverse organizations. Importantly,
there are no shortcuts to advancing, and no ways to “leapfrog” a level.
DevSecOps as represented by the maturity model is a journey.

2
The DevSecOps
Maturity Model

http://datadoghq.com
http://datadog.com
Mobile User

DevSecOps Maturity Model

datadog.com

7

	– Beginner: This phase marks the beginning of the DevSecOps journey.
Most important is a shift in culture and mindset that emphasizes
sharing and collaboration across technical disciplines, and a desire to
improve performance as a team. This is the foundation of DevSecOps.

	– Intermediate: In this stage, organizations are consistently releasing
software but may experience bottlenecks, performance issues, and
some team friction. While security controls are shifting earlier in the
development process, much of the security-related work is still done
towards the end of the process, which can slow down release cycles
and result in lower quality code.

	– Advanced: In this stage, organizations are highly efficient and
productive, releasing high quality, secure software on a regular basis to
a reliable platform. Security checkpoints are embedded throughout the
software development lifecycle.

	– Expert: These are DevSecOps practices employed by the most
cutting edge organizations. These organizations release high quality
code multiple times per day. Security controls are deeply embedded
throughout the SDLC, and security has ceased to be a siloed domain. A
key aspect of this stage of maturity is a very high level of automation of
processes across Development, Operations, and Security.

The Competencies

The DevSecOps Maturity Model covers six key competencies:

	– People & Culture: This competency is the foundation of DevSecOps.
This area encompasses organizational structure, communication
styles, values, incentives, behaviors, leadership, and individual and
team health.

The remaining five competencies can be mapped to the major phases
of the end-to-end DevSecOps lifecycle. These competency areas blend
process and technology.

	– Plan & Develop: This competency area encompasses how work is
prioritized, how much work is planned versus unplanned, how much
work is new feature development versus paying down technical debt,
and how much risk assessment and code validation factors into the
earliest stage of the development process.

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

8

	– Build & Test: This area covers testing processes and automation,
quality assurance, code scanning techniques, and build and
signature validation.

	– Release & Deploy: This competency focuses on deployment strategies
and release frequency, automation of the deployment process, and
validation and remediation of deployment issues.

	– Operate: This area covers infrastructure as code, capacity planning,
scaling and reliability, chaos testing and red teaming, patching, and
disaster recovery.

	– Observe & Respond: This competency focuses on Service Level
Objectives (SLOs), vulnerability and misconfiguration scanning, security
monitoring, user experience monitoring, incident management, and
post-mortems.

The Model

In the matrix below, each of the six competency areas encompasses a
series of separate competencies, at least two of which are a security-
related competency. For each competency, we identify four levels of
maturity: Beginner, Intermediate, Advanced, and Expert.

(Note: the Appendix to this document contains additional detail on each
cell in the matrix below.)

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

9

People & Culture

Plan & Develop

Build & Test

Release & Deploy

	– Functional teams
siloed

	– High inter-team
friction

	– Nascent
onboarding
processes

	– Burnout common

	– Risk and security
not considered

	– High technical
debt

	– Excessive bug
fix work

	– Code not
validated

	– Manual testing

	– No code scanning

	– No build/signature
validation

	– Limited core
functionality
testing

	– Manual
deployments

	– Large, infrequent
releases

	– No deployment
security posture
criteria

	– Difficult to
remediate failed
deployment

	– Silos breaking
down

	– Embracing
experimentation &
transparency

	– Onboarding
process exists

	– Burnout openly
discussed

	– Limited risk
assessment

	– Moderate
technical debt

	– Moderate bug fix
work

	– Some code
validation

	– Partial test
automation

	– Partial code
scanning

	– Partial build/
signature
validation

	– Partial core
functionality
testing

	– Partial
deployment
automation

	– Medium-sized,
monthly releases

	– Basic deployment
security posture
criteria

	– Acceptable failed
deployment
remediation times

	– Continuous
collaboration
across teams

	– Blameless culture

	– Comprehensive
onboarding
process

	– Burnout quickly
addressed

	– Threat modeling
and risk
assessments

	– Low technical
debt

	– Low bug fix work

	– All code validated

	– High test
automation

	– Dynamic code
scanning

	– Significant
build/signature
validation

	– Significant core
functionality
testing

	– High deployment
automation

	– Small, weekly
releases

	– Detailed
deployment
security posture
criteria

	– Fast failed
deployment
remediation times

	– Cross-functional
teams aligned
to products and
services

	– High trust,
experimentation,
learning culture

	– Burnout rare

	– Extensive threat
modeling/risk
assessment

	– Minimal technical
debt

	– New feature focus

	– All code validated
automatically

	– Complete test
automation

	– Comprehensive
dynamic code
scanning

	– Comprehensive
build/signature
validation

	– Comprehensive
core functionality
testing

	– Full deployment
automation

	– Numerous daily
releases

	– Automated
deployment failing

	– Bias to fast
forward fixes

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

10

Operate

Observe & Respond

	– Manual
provisioning/
configuration

	– Long capacity
planning cycles

	– Manual scaling

	– Single availability
zone

	– No chaos testing
or red teaming

	– Poor patching
hygiene

	– No disaster
recovery strategy

	– No SLOs formed

	– No vulnerability/
misconfiguration
scanning

	– No security
metrics defined

	– Siloed telemetry

	– User journeys
unknown

	– Excessive MTTD
and MTTR

	– No post-mortems

	– Partial
configuration/
provisioning
automation

	– OpEx-based
capacity planning

	– Partial auto-
scaling

	– Multi-availability
zone/region

	– Basic chaos
testing or red
teaming

	– Basic patching
hygiene

	– Basic DR strategy

	– Basic SLOs formed

	– Partial
vulnerability/
misconfiguration
scanning

	– Some security
metrics defined &
visible

	– Some common
observability data
sets

	– Basic
understanding of
user experience

	– Moderately high
MTTD and MTTR

	– Basic post-
mortems

	– Extensive
configuration/
provisioning
automation

	– Capacity
planning based
on seasonality/
growth

	– Significant auto-
scaling

	– Multiple cloud
providers / high
availability

	– Significant chaos
testing & red
teaming

	– Fast patching

	– Comprehensive
DR strategy

	– SLOs & error
budgets favored

	– Significant
vulnerability/
misconfiguration
scanning

	– Security metrics
defined & visible
for most services

	– Common
observability data
platform

	– Detailed user
journey visibility

	– Moderate-to-low
MTTD and MTTR

	– Detailed post-
mortems

	– All infrastructure
configurations
and instructions
instantiated as
code

	– Capacity planning
based on granular
usage trends/
predictions

	– Comprehensive
auto-scaling

	– Multiple cloud
providers / very
high availability

	– Continuous chaos
testing & red
teaming

	– Patching SLA

	– DR plans tested
often

	– SLOs & error
budgets drive
decisions

	– Extensive
vulnerability/
misconfiguration
scanning

	– Security metrics
defined & visible
for 100% of
services

	– Standardized
metadata model

	– Complete user
journey visibility

	– Very low MTTD
and MTTR

	– Clear, blameless
post-mortems

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

11

Let’s return to the three key questions for technical leaders (Where is my
organization? Where do we want to be? How do we get there?), and discuss
how the Maturity Model can help answer them.

Where is my organization now?
The DevSecOps Maturity Assessment

Technical leaders need to calibrate where their organizations are on the
DevSecOps maturity curve. Towards that end, we’ve developed an online
self-assessment tool based on the DevSecOps Maturity Model. The
assessment is 36 questions and takes 10 minutes to complete.

The assessment is a diagnostic tool that is not meant to be precise, but
to give a rough indication of an organization’s DevSecOps maturity, and
areas to consider for improvement. The assessment generates an overall
maturity score.

Because organizations often have varying levels of maturity across
competency areas, it’s valuable to plot maturity levels on radar / spider
charts, as shown below.

STEP 1: ASSESS WHERE YOUR ORGANIZATION IS

Overall Maturity

Maturity by Competency

BEGINNER

INTERMEDIATE

ADVANCED

EXPERT

Plan & DevelopObserve & Respond

Culture

Build & TestOperate

Release & Deploy

3
Implications for
your DevSecOps
Journey

Based on the output of the assessment, leaders can see at a glance where
there is room for improvement and investment.

http://datadoghq.com
http://datadog.com
https://www.datadoghq.com/resources/devsecops-assessment/
https://www.datadoghq.com/resources/devsecops-assessment/

DevSecOps Maturity Model

datadog.com

12

Where do I want my organization to be? Moving right in
the matrix

Once leaders have a sense of where their organizations stand in their
DevSecOps practices, the next step is to determine what “good” looks like
given their industry and business goals. The stages at the far right of the
maturity model show what best-in-class DevSecOps practices look like in
today’s enterprises.

It’s important to note that DevSecOps maturity varies across industries.
An “Intermediate” rating might be highly competitive in one industry but
lagging in another industry.

A useful exercise is shown below. Here, we highlight a hypothetical
organization’s maturity across all competencies, and we highlight
reasonable targets to hit within the next 12–18 months.

STEP 2: DEFINE WHERE YOUR ORGANIZATION NEEDS TO GO

Culture

Plan & Develop

Build & Test

Operate

Release & Deploy

Observe & Respond

Overall Maturity

Beginner Intermediate Advanced Expert

Where we are Where we want to be

Keep in mind that progress is incremental. Advancing even one level of
overall maturity within 12 months is an accomplishment. Depending on the
amount of work to be done, leaders may need to set multi-year plans with
intermediate targets.

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

13

It’s also important to remember that state of the art DevSecOps practice is
constantly evolving and advancing. An “Advanced” rating one year might
become an “Intermediate” rating the next. For this reason, it’s important
for both maturity models to stay up-to-date and for leaders to continually
reassess their organizations using the latest models.

How do I get there? One cell at a time.

Because DevSecOps is a holistic set of practices spanning people, process,
and technology, each competency reinforces the other competencies. For
this reason, an organization with low maturity in one area will likely not
be able to advance overall very quickly until the lowest maturity areas are
addressed. We recommend prioritizing low maturity areas first in order to
build a strong foundation for more advanced stages of maturity.

The cells in the maturity model show the incremental steps leaders can
take to move from one level to the next.

STEP 3: DETERMINE HOW YOU’LL GET THERE BY PRIORITIZING INITIATIVES
AND INVESTMENT AND NOMINATING OWNERS FOR EACH COMPETENCY AREA
AND INDIVIDUAL COMPETENCY

Q1 Owner

Q1 Owner

Q2 Owner

Q2 Owner/Leader

Q1 Owner

Q2 Owner

Q2 Owner

Q3

Q3

Q3

Q2

Q2

Q2

Culture

Plan & Develop

Build & Test

Operate

Release & Deploy

Observe & Respond

Overall Maturity

Beginner Intermediate Advanced Expert

Where we are How we're getting there Where we want to be

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

14

Each of the competency categories and each of the specific competency
areas is a large topic unto itself. We recommend leaders enlist direct
reports to own specific competency areas, who can then enlist their team
members to own specific competencies (e.g. Test Automation).

DevSecOps drives more productive, collaborative, and responsive
teams that deliver high quality, secure software faster to highly reliable
production environments. This translates to tangible business value. Let’s
break down how.

Four primary value drivers

Organizations that adopt the DevSecOps practices in the maturity model
realize business value through four key drivers:

1.	 Faster, more agile delivery and reduced time to market: DevSecOps
enables organizations to deliver applications to market faster,
and confidently iterate revenue-impacting applications with more
frequency to protect and grow revenue. The integration of security into
DevOps workflows eliminates potential bottlenecks and accelerates
organizations’ efficiency and agility.

2.	 Improved security posture and reduced risk: DevSecOps integrates
security stakeholders and security practices into all phases of the
software development lifecycle and the operation of services in
production. Greater collaboration, trust, and transparency among Dev,
Sec, Ops teams results in lower risk software.

3.	 Reduced operational and development costs: The fast feedback loops
of DevSecOps practices streamline the software development life cycle
and eliminate the vast mtajority of issues before they reach production
environments. Incidents that do occur are resolved very quickly.

4.	 Improved customer experiences and satisfaction: By producing
higher quality and more secure software, DevSecOps increases the
value organizations provide to their customers. Customers also value
more frequent enhancements and upgrades to their services. Finally,
customer satisfaction is also boosted when organizations are able to
observe systems from the end-users’ perspective and have visibility
into end-to-end customer journeys.

4
The Business
Value of
DevSecOps

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

15

Faster, more
agile delivery
and reduced
time to market

Improved security
posture and
reduced risk

Improved customer
experiences and
satisfaction

Reduced
operational and
development costs

Release
frequency

Time to market

Issues identified
in Dev & QA
environments

MTTD/MTTR

FTEs involved
per incident

Customer
complaint calls

Incidents/
outages

Customer
satisfaction

Release
frequency

Issues identified
in Dev & QA
environments

Incidents/
outages

QA time required
to identify,
recreate, and
document
defects

Developer
wait time

Engineer time to
resolve incidents

Tech support
center costs

Financial
losses due to
performance
degradation
or security
incidents

Tech support
center costs

Engineer time to
resolve incidents

QA time required
to identify,
recreate, and
document
defects

Developer
wait time

Over-provisioning
infrastructure

Customers/
market share

Customer
satisfaction

Customer share
of wallet

Customer
satisfaction

Customer share
of wallet

Customer churn

Customer
satisfaction

Customer share
of wallet

Customer churn

Revenue from
new customers

Revenue from
increase in
share of wallet

Revenue from
accelerated
time to market

Revenue from
new products

Revenue
from pricing
innovation

Lost revenue
due to outages

Revenue from
reduced churn

Revenue from
higher share
of wallet

Revenue from
reduced churn

Revenue from
higher share
of wallet

METRIC COSTS CUSTOMER REVENUE

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

16

DevSecOps business value metrics

As organizations increase their DevSecOps maturity, the business value
derived from each of these drivers increases. The table above covers in
more detail the business value of each driver in terms of productivity
metrics, customer metrics, costs, and revenue.

Technical leaders can and should measure their DevSecOps journeys using
the above metrics. These metrics are essential for demonstrating progress
throughout the organization, and for justifying the investments necessary
to progress along the maturity curve.

The DevSecOps Maturity Model is based on patterns we’ve seen working
with thousands of customers to advance their DevSecOps practices. It has
been validated with customers and used as a tool to help leaders answer
the three key questions: Where are we? Where do we want to go? How do
we get there?

We recommend technical leaders complete the 10-minute DevSecOps Self-
Assessment to take the first step in your DevSecOps journey.

Jeremy Garcia, Director, Technical Community & Open Source

Andrew Krug, Technical Evangelist

Fahim Ghaffar, Vice President, Technical Services

Boyan Syarov, Principal Solutions Engineer

Christy Pasion, Director, Technical Enablement

Ziquan Miao, Senior Technical Account Manager

5
Get Started

Authors

http://datadoghq.com
http://datadog.com
https://www.datadoghq.com/resources/devsecops-assessment/
https://www.datadoghq.com/resources/devsecops-assessment/

DevSecOps Maturity Model

datadog.com

17

Datadog is the monitoring and security platform for cloud applications.
Our SaaS platform integrates and automates infrastructure monitoring,
application performance monitoring and log management to provide
unified, real-time observability of our customers’ entire technology stack.
Datadog is used by organizations of all sizes and across a wide range of
industries to enable digital transformation and cloud migration, drive
collaboration among development, operations, security and business
teams, accelerate time to market for applications, reduce time to problem
resolution, secure applications and infrastructure, understand user
behavior and track key business metrics.

For more information, visit datadoghq.com

About Datadog

http://datadoghq.com
http://datadog.com
http://datadoghq.com

DevSecOps Maturity Model

datadog.com

18

Appendix:
Detailed Maturity Model

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

19

Communication

Onboarding

Accountability

Team health

Siloed by
functional team.

No standardized
onboarding process.

Fear, lack of
trust, blame, and
fingerpointing.

Team members
not able to discuss
burnout and not
empowered to take
mitigation measures.

Limited to Dev and
Ops teams. Security
remains siloed, and
team members don't
know who to report
security concerns to.

Onboarding process
exists, but engineers
are not fully
productive after
completing and ramp
up time is long.

Fear of
experimentation,
some transparency,
behind the scenes
fingerpointing.

Team members
openly discuss
burnout, but are not
empowered to take
mitigation measures.

Security
stakeholders
regularly share with
Dev and Ops teams
but not as frequently
as Dev and Ops
teams share.

Engineers are
considered
productive after
onboarding.

Blameless culture
and frequent
experimentation.

Team members
are able to discuss
burnout and are
empowered to take
mitigation measures.

Regular
communication
and sharing
across operations,
development, and
security. Team
members know who
to report security
concerns to.

Comprehensive
onboarding process
enables engineers to
be fully productive
and ramp up quickly.

Transparent,
blameless, high
trust, learning
culture, and
experimentation.

Burnout is rare,
but is openly
discussed and
quickly addressed.

1. Culture

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

20

Risk assessment

Technical debt
management

Prioritization

Code validation

Security and risk are
not considered at
the beginning of the
development cycle.

Technical
debt increases
uncontrolled.

Engineers spend
the majority of their
time performing
unplanned/
bugfix work and
remediating
incidents.

Code is not validated
after development.

Security and risk
considerations
are introduced
in middle-to-late
stages of the
development cycle.

Technical debt
is semi-regularly
reduced but
reduction is not
prioritized.

Engineers are
frequently
interrupted by
unplanned / bug fix
work, which delays
planned releases.

Code is validated
partially and
manually after
development.

Risk assessment or
threat modeling is
conducted at the
beginning of some
but not all services
at the design stage.

Technical debt
management is
emphasized.

Engineers spend
most of their time
on new features,
but unplanned work
is still significant.

Static code
analysis (e.g. Static
application security
testing, or SAST)
is performed on
some code to
prevent commits of
vulnerable code.

Risk assessment or
threat modeling is
used for every new
service as part of
the design phase.

Technical debt
reduction across
applications and
infrastructure is
consistently tackled
and remains low.

Engineers spend
the majority of
their time creating
new customer-
facing features and
functionality.

Static code
analysis (e.g. Static
application security
testing, or SAST) is
performed during the
development phase
to prevent commits
of vulnerable code.

2. Plan & Develop

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

21

Test automation

Code scanning

Build validation

Quality assurance

Manual testing
is performed by
dedicated teams.

Committed code is
not scanned to stop
the packaging of
vulnerable code.

Builds and signatures
are not validated to
block unsigned or
vulnerable packages.

Core business
functionality is
not tested.

Testing is partially
automated
with significant
manual testing.

Some code is
scanned to stop
the packaging of
vulnerable code.

Builds and
signatures are
partially validated
to block unsigned or
vulnerable packages.

Infrequent or
manual testing
of core business
functionality.

Testing is mostly
automated.

Dynamic code
scanning (e.g.
Dynamic application
security testing, or
DAST) is performed
on some committed
code to stop the
packaging of
vulnerable code.

Most builds and
signatures are
automatically
validated to
block unsigned or
vulnerable packages.

The core business
functionality of
many applications
is frequently and
automatically tested.

Testing is fully
automated and
various testing
regimes are applied
at all stages of
the development
lifecycle.

Dynamic code
scanning (e.g.
Dynamic application
security testing, or
DAST) is performed
on all committed
code to stop the
packaging of
vulnerable code.

Builds and signatures
are automatically
validated to
block unsigned or
vulnerable packages.

The core business
functionality of
all applications is
continuously and
automatically tested.

3. Build & Test

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

22

Deployment
automation

Deployment
strategy

Deployment
validation

Deployment
remediation

Teams manually
move code from
one environment
to another.

Waterfall
methodology
results in large,
infrequent releases.

There is no criteria
for failing a new
deployment based
on security posture.

Remediating a failed
deployment is a
time consuming and
manual process.

Partial automation of
deployment process.

New code is released
semi-regularly
(e.g. monthly).

There is a limited
set of criteria
for failing a new
deployment based
on security posture,
and deployment
validation is
inconsistent.

Teams have the
ability to quickly
roll back a failed
deployment.

Automation of most
of the deployment
process.

Agile methodology
and modern
deployment
strategies (e.g.
canary, blue-green,
shadow) support
regular releases
(e.g. weekly).

A set of criteria
exists for failing a
new deployment
based on security
posture, but
implemention is not
fully automated.

Teams can quickly
roll back a failed
deployment but
often make a
forward fix instead.

Tooling allows
fully automated
deployments into
production.

Agile methodology
and modern
deployment
strategies (e.g.
canary, blue-green,
shadow) facilitate
releases multiple
times per day.

A set of criteria
exists for failing a
new deployment
based on security
posture, and it
is automatically
implemented.

Teams are biased
to forward fixing
deployment issues,
and are capable of
doing so quickly.

4. Release & Deploy

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

23

Platform
management

Capacity planning

Scaling

Reliability

Resiliency testing

Configuration
management
sprawl and lack
of deployment
templating.

Long capacity
planning cycles
(annual or quarterly)
leveraging CapEx
budget.

Manual scaling.

Production
environments run
on single cloud
provider region or
availability zone.

Environments
not tested to the
breaking point and
no red team tests/
adversary simulation
conducted.

Infrastructure
configurations
partially committed
to code repository
and some manual
processes exist.

Capacity planning
leverages OpEx
budget, but
limited insight
into seasonality
and growth.

Pre-warmed
environments with
mix of automatic
and manual scaling
processes.

Production
environments span
multiple availability
zones and/or regions.

Performance
testing only in
pre-production
environments.
Infrequent red
team testing.

Infrastructure
configurations fully
committed to code
repository with
mostly automatic
deployments.

Capacity planning
leverages OpEx
and informed
by seasonality
and growth.

Partial auto-scaling
of the environment.

Production
environments
span multiple
AZs, regions,
cloud providers.

Frequent chaos
testing on some
production
environments.
Frequent red
team testing.

Infrastructure
managed by
configuration
management/
orchestration tools
and committed to
code repository.

Capacity planning
leverages OpEx and
based on seasonality
and growth data.

Auto-scaling occurs
when certain
conditions are
met (e.g. influx of
legitimate requests).

Highly available
production
environments
span multiple
AZs, regions,
cloud providers.

Continuous chaos
tests on production
environment.
Continuous red
team tests.

5. Operate

Patching Patching is
infrequent and
not systematic.

Regular patching
but systems remain
vulnerable for long
periods of time.

Consistent patching
after vulnerabilities
detected but no
established SLA.

Established SLA
for patching
systems found to
be vulnerable.

Disaster
recovery (DR)

No DR strategy
in place.

DR strategy in
place but not
tested regularly and
involves significant
downtime.

DR strategy in
place that is tested
semi-regularly.

DR strategy in place
that is tested at
regular intervals.

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

DevSecOps Maturity Model

datadog.com

24

Service level
objectives (SLOs)

Vulnerability &
misconfiguration
scanning

Security monitoring

User experience

Data model
& access

No SLOs formed.

No scanning.

Security metrics (e.g.
failed logins) not
defined or visible.

No visibility
into end-to-end
customer journeys.

Data is uncorrelated,
and ingested
into separate
systems owned by
separate teams
and not shared.

Rudimentary SLOs
formed which may
not reflect user
experience.

Some infrastructure
and applications
scanned.

Security metrics are
partially defined
and visible.

Partial visibility
into some customer
journeys.

Some common
datasets, but not
easy to correlate,
search, and filter.
Frequent context
switching.

SLOs and error
budgets are primary
indicators of
service reliability.

Most infra and
apps scanned.

Security metrics
defined and partially
visible for 100%
of services.

High visibility into
most customer
journeys.

Common data
platform with
a metadata
model, usable by
most teams.

SLOs and error
budgets are the
primary driver
of engineering
decisions.

Continuous scanning
of all infra and apps.

Security metrics
defined and fully
visible for 100%
of services.

Full visibility into all
customer journeys.

Mature metadata
model, via the use of
tags or labels, that is
usable by all teams.

6. Observe & Respond

Incident
management

Post-mortems

Incident detection
and remediation
times excessively
long and not
precisely known.

No formal template
or process for
post-mortems.

Incident detection
and remediation
times improving
but not precisely
measured.

Inconsistent post-
mortems that
are not entirely
blameless or clear.

Incident detection
and remediation
times low and
roughly measured.

Blameless post-
mortems created in
a timely manner.

Incident detection
and remediation
times very low and
rigorously measured.

Blameless post-
mortems created in
a timely manner with
clear action items.

BEGINNERCOMPETENCY INTERMEDIATE ADVANCED EXPERT

http://datadoghq.com
http://datadog.com

